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While many rheological studies are performed at a fixed concentration, most granular
flows are constrained, not by concentration, but by an applied stress. The stress
constraint sets the average concentration, but the material is free to vary that
concentration slightly to match the applied stress with that generated internally. This
study examines stress-controlled systems in light of recent findings that the elastic
properties of the particles appear as constitutive parameters even in flowing situations.
Stress-controlled flows are shown to behave very differently from flows at fixed
concentration. In particular, if the stress is fixed and the shear rate is slowly increased,
the flow exhibits the expected progression from elastic–quasi-static to elastic–inertial
to inertial flow – a sequence opposite to that followed in fixed-concentration flows.
Thus system-scale constraints can have a profound effect on granular rheology.

1. Introduction
Campbell (2002) examined computer simulations of granular shear flows at fixed

concentration and found that by including the elastic properties of the particles
as a rheological parameter, it was possible to draw out complete flowmaps for
granular flows. However, flows at fixed concentration are seldom, if ever, found
outside the laboratory. In most common flows such as hoppers and chutes, every
point in the material must support an applied stress, usually fixed by a gravitational
overburden. The concentration is only approximately fixed by the interaction between
this overburden, the flow conditions and material properties. The actual concentration
varies slightly to accommodate variations in the local conditions. This paper examines
granular shear flows under conditions of controlled stress instead of controlled
concentration and fits them into the elastic flow regime structure of Campbell (2002).
As will be shown, this change in system-scale constraints has a huge effect on the
rheological behaviour of the system as a whole.

2. Background
Classically, granular flows have been studied in two limiting flow regimes. Very slow

flows behave quasi-statically in that they generate stresses that are independent of the
state of motion. Typically, these are assumed to obey Coulomb’s (1773) frictional law
and are modelled using plasticity methods (see for example, Jackson 1983). At the
other extreme, ‘rapid’ granular flows behave inertially and generate stresses that vary
quadratically with the shear rate (see for example, Campbell 1990). In modelling rapid
flows, the particles are likened to molecules in the kinetic theory of gases and are as-
sumed to move thermally and interact by instantaneous collisions. As Coulombic fric-
tion opened the formalisms of plasticity theory to model slow flows, these assumptions
opened the formalisms of the kinetic theory of gases to model rapid granular flows.
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However, little was understood about the parameter space in which these regimes
are valid. Furthermore, somewhere between these two extremes, there must be an
intermediate regime where inertial effects are important, but the particles are not yet
in the thermalized state of rapid flow theory. Campbell (2002) performed computer
simulation studies of shear flows at constant volume (i.e. fixed-concentration), and,
by including the elastic properties of the particles as rheological parameters, was able
to fill out the entire flowmap, connecting the quasi-static and rapid flow regimes.

Campbell (2002) identified two broad regimes and four subregimes for granular
flows. In the elastic regimes, particles experience long duration contacts with their
neighbours and transmit force through the elastic deformation of the interparticle
contacts. This is further subdivided into the elastic–quasi-static (classically called
simply the quasi-static regime) where the stresses are independent of the shear rate
and the elastic–inertial regime, where the forces associated with flow inertia become
comparable with the elastic forces and the stresses vary linearly with the shear rate.
In inertial flows, the elastic forces become insignificant, the stresses are generated
inertially and vary with the square of the shear rate. Inertial flows are subdivided
into the inertial–collisional regime (classically called the rapid-flow regime) in which
the particles interact by binary collisions and inertial-non-collisional flows where the
particles interact simultaneously with several of their neighbours, but the stresses still
scale inertially.

The different behaviours can be more easily understood if we remember that the
internal stresses can be thought of as the product: (transported momentum) (transport
rate) or alternatively, (average force) (duration of force) (transport rate).

In the elastic regimes, the particles are locked into elastic networks or force chains.
Force chains are heavily loaded structures of particles that carry the majority of
the load and deform elastically under the applied stresses (Drescher & De Josselin
de Jong 1972; Cundall & Strack 1979; Miller, O’Hern & Behringer 1996; Mueth,
Jaeger & Nagel 1998; Howell, Behringer & Veje 1999a, b). The elastic nature of
these stresses is immediately apparent in the photoelastic techniques typically used to
visualize force chains experimentally. For the purpose of understanding their effect
on the rheology, we can imagine these force chains as nearly linear columns of
particles. When compressed, the constituent particles deform at their contact points
and the resultant forces are proportional to the stiffness k of the contacts. In a shear
flow, stresses are generated when the shear drives particle together to form a chain,
compresses, rotates and finally destroys the chain (this process may be clearly seen in
videos of the Howell et al. 1999a, b experiments). In a slow motion at constant volume,
the degree of compression and thus the magnitude of the force is determined by the
necessity of conforming to a shear motion within the constant volume constraint.
Thus the (average force) is independent of the shear rate γ. Chains form as the shear
rate forces particles together, with a rate proportional to the shear rate, γ, (which is a
time scale for the transport rate), but the chains persist for a time proportional to 1/γ ,
so that the (force duration) (transport rate) is independent of γ. Thus the product
(average force) (duration of force) (transport rate), and therefore all the averaged
stresses, are γ independent and the general behaviour is quasi-static. As the degree of
compression of the chains is dictated by geometric constraints, the generated forces
are related to the elastic properties through the interparticle stiffness, k. This is the
elastic–quasi-static subregime.

When the shear rate is large enough, the particle momentum becomes significant
and is reflected in the forces generated in the chain. As the inertial part of the particle
momentum is proportional to γ, the magnitude of the average force will have the
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form a + bγ where a is the baseline quasi-static elastic force (i.e. the force as γ → 0)
and γ is the extra force arising from the particle inertia. Once again the chains are
generated at a rate proportional to γ and persist for a period proportional to 1/γ

so that the (force duration) (transport rate) is again independent of γ. Thus the
resultant stresses vary only with the generated forces and increase linearly with γ .
This is called the ‘elastic–inertial’ regime as the stresses are generated both elastically
and inertially. In their underlying physics, the elastic–quasi-static and elastic–inertial
regimes are identical. They are differentiated only because in the elastic–quasi-static
regime the inertial forces are negligibly small.

In pure inertial flows, the particles have broken free of the force chains. In that
case, the rate at which particles are driven together is proportional to the shear rate γ.

However, as the duration of interparticle contacts is determined by how long it takes
the elastic contact forces to drive the contacting particles apart, it depends only on the
elastic properties of the particles, not on the shear rate. For collisions between only
two particles, that duration is the binary collision time, Tbc. If more that two particles
interact simultaneously, the collision times can be longer than Tbc, but will generally
be of the same order of magnitude as Tbc. (In Campbell 2002, the longest inertial
contacts were of the order of 10Tbc. In comparison, when the material was exhibiting
elastic behaviour, the duration was proportional to 1/γ and was independent of
Tbc; cases were observed that reached nearly 1000Tbc.) Thus for inertial flows, the
rate is proportional to shear rate γ. At the same time, the momentum transferred is
proportional to the impact velocity which is also proportional to γ. Consequently,
the (transported momentum) (transport rate) is proportional to γ 2. Thus, the stresses
vary quadratically with the shear rate (a behaviour first deduced by Bagnold 1954).
One of the most fundamental assumptions of rapid flow theory is that particles
interact solely by binary collisions, the inertial regime is further subdivided into
an inertial–collisional (or rapid flow regime) and an inertial–non-collisional regime
where the particles are in contact with multiple particles simultaneously and rapid
flow assumptions do not apply.

There have been attempts to fill in the flowmap. Babic, Shen & Shen (1990)
constructed a flowmap for two-dimensional flows of disks, dividing the space between
the rapid and what they called their quasi-static regimes, with two transitional
regimes (type A and type B) based on the coordination number, the number of
simultaneous contacts experienced by a particle. Because different criteria are used
for differentiating the regimes, these categories are fundamentally different from
Campbell’s four regimes. For example, their quasi-static regime corresponded not
to cases where the stress was independent of shear rate, but to cases where force
chains were permanent, and only occurred at concentrations near to or exceeding the
maximum hexagonal packing of disks; there, the material does not shear uniformly,
but slips along surfaces called slip-planes. This does not correspond to any of the
cases studied in Campbell (2002) which all occurred at concentrations below random
close packing of spheres (which is significantly smaller than the maximum sphere
packing). The Babic et al. type B transitional regime described cases where force
chains formed and broke and thus encompassed both the elastic–quasi-static and
elastic–inertial regimes of Campbell (2002). Aharaonov & Sparks (1999) divided
the flows into ‘solid’ (inertia-free flows corresponding to the elastic–quasi-static
regime) and ‘gases’ (all flows showing inertial effects corresponding to the elastic–
inertial, inertial–non-collisional and inertial-collisional flows of Campbell 2002; thus
some of their ‘gas’ flows contained force chains). They described their solid/gas
transition as a ‘rigidity transition’ although their data indicates and the current results
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show, that force chains exist, and thus the material is ‘rigid’ on both sides of the
transition.

As suggested by the choice of names, it has generally been assumed that if we
increase the shear rate from zero, we would initially see quasi-static behaviour at
low shear rates and eventually reach rapid flow (inertial-collisional) behaviour at
high shear rates. But that was not the behaviour observed at fixed concentration by
Campbell (2002). In fact, there was no path between elastic–quasi-static and pure
inertial flows, simply by varying the shear rate; such a transition was only possible
by reducing the concentration. Part of this should be evident. The elastic–quasi-
static and elastic–inertial regimes depend on the existence of force chains whereas
inertial regimes depend on their absence and we would not expect force chains to
vanish when the shear rate is increased. However, inertial flows can be reached by
decreasing the concentration below the level at which force chains form. Campbell
observed that collisional flows could only be obtained at low shear rates, implying,
ironically, that rapid flows are less rapid than other flows. At very large shear rates, the
particles may be brought together at a rate comparable to the rate at which they are
elastically driven apart, forming force chains at concentrations that would otherwise
exhibit inertial behaviour; thus it is possible to have an elastic–inertial ←→ inertial
transition by changing the shear rate, but not an elastic–quasi-static ←→ inertial
transition.

However, we might anticipate a different behaviour in controlled-stress flows for
which the volume is allowed to change in order to balance an applied stress. At
small shear rates, we expect the material to shear at the ‘critical state’ void fraction
appropriate to the stress loading (Casagrande 1938; Roscoe, Schofield & Wroth 1958;
Schofield & Wroth 1968). As the shear rate is increased and inertia becomes important,
we would expect the system to expand, eventually adopting inertial behaviour when
the concentration falls below the value at which force chains form. Hence, if increasing
the shear rate in controlled-stress flows, the system should progress from elastic–quasi-
static → elastic–inertial → inertial-non-collisional → inertial-collisional behaviour in
the expected manner.

Aharonov & Sparks (1999) also considered fixed concentration and fixed-stress
separately and noted differences and similarities between them. Their results will be
discussed in greater detail later.

The difference between controlled-volume and controlled-stress measurements is
reflected in the long observed differences between drained and undrained tests in soil
mechanics. In undrained tests, the soil is generally saturated with water which, as
the name suggests, is not allowed to drain in or out during the test. The water acts
like an incompressible fluid and thus keeps the volume constant throughout the test.
Even if the soil structure breaks down, the water pressure can support the applied
load and allow the particles much the same freedom of motion as seen in fluid-free
constant-volume simulations. However, if the water is allowed to drain away, the
fluid will be forced out before it can build up enough pressure to support the applied
forces; in those cases the forces must be supported by the particle forces and thus
behave in a controlled-stress manner.

We might expect that rheological properties derived at fixed concentrations are still
applicable to controlled-stress cases with slight variations in concentration, but as
suggested by the above, and as will be shown in the following, this is not the case.
Instead it appears that these types of system-scale constraints have a profound effect
on the granular rheology.

Portions of this work are presented in Campbell (2004a–c).
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3. Computer simulation
These studies were performed using a soft-particle computer simulation, a technique

originally developed by Cundall & Strack (1979). (See the reviews of computer
simulation techniques by Campbell 1986, 1997 and Herrmann & Luding 1998). As
in Campbell (2002), contacts are modelled as a spring with associated stiffness k in
the direction along the line connecting the particle centres. A viscous dashpot with
coefficient D, is added in parallel to the spring to dissipate the collisional energy.
Tangential to the surfaces at the contact point, the particles are connected through a
frictional slider with coefficient µ, connected in series with another spring also with
stiffness k. This contact model was first used by Cundall & Strack (1979).

The dashpot coefficient D, will be expressed dimensionlessly as a binary coefficient
of restitution ε (which is the ratio of recoil to impact velocity for a binary collision
in the centre of mass frame):

ε = exp

[
− πD√

2mk −D2

]
, (3.1)

where m is the particle mass. Even though there are few collisional flows of concern to
this paper, the coefficient of restitution is still used as it is a convenient dimensionless
representation of the particle inelasticity, and has an easily understood physical
meaning. Campbell (2002) showed that ε appropriately scales the dashpot coefficient
D, in the sense that ε is the only governing dimensionless parameter containing D

and that flows for which ε and all other dimesionless parameters are fixed produce
quantitatively the same results, regardless of the value of D. (See § 4 for a discussion
of the governing dimensionless parameters.)

All of these simulations model one thousand spheres of diameter d , confined in a
control volume initially dimensioned 10× 10× 10 mean particle spacings and bound
in all directions by periodic images. (Tests of the effects of control volume size were
performed in Campbell, 2002, and showed there was no effect of control volume
size as long as the volume is 7× 7× 7 spacings or larger, at least for the large
particle concentrations of interest here. More limited tests confirm those results for
controlled-stress situations.) To induce a uniform shear within the control volume,
periodic images above and below the control volume in the y-direction are set in
motion with fixed velocity in the manner originally used by Lees & Edwards (1972),
which produce a constant shear rate and a constant solids fraction across the control
volume. In the following, x is used to represent the direction of the mean motion, y is
the coordinate in the direction of the velocity gradient (so the shear-rate γ = |dux/dy|,
where ux is the mean velocity in the x-direction), and z represents the out-of-the-
shear-plane coordinate (i.e. the vorticity direction).

The stress on the system was controlled by increasing or decreasing the size of
the control volume as required to balance the internal stress (which is assessed at
each time step) with the applied stress. Conceivably, this could be done in many
ways, but for these studies, it was decided to use coaxial shear cells, rectangular
chutes and landslides as model systems and allow the control volume to expand
only in the vertical direction (the direction of the velocity gradient). The simulation
control volume is schematically represented in figure 1. A stress τ0 is applied in the
vertical (y) direction and the control volume expands or contracts as necessary in
that direction to balance that stress. Now there are many possible ways in which
to move the boundary in response to an imbalance between the applied stress and
the stress response generated in the material. As this paper primarily concerns dense
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Figure 1. A schematic of the stress-controlled simulation control volume.

flows internally spanned by force chains that form, rotate and destruct in the shear
flow, it is necessary to chose a scheme that maintains the degree of compression in
the chain throughout this process. Imagining the force chain as a pole in a pole-vault,
this would require the vertical dimension of the control volume to change at a rate
proportional to the horizontal velocity (γH ) of the upper periodic image. In the spirit
of Hoover (1985), the y-direction boundary is moved at a rate χ̇H proportional to
the degree of stress imbalance (i.e. difference between the realized (τyy) and desired
stress levels (τ0)). However, whereas Hoover used an arbitrary relaxation time, here
we have an appropriate flow time scale, the inverse shear rate 1/γ , governing the rate
at which stresses change. Compared to molecular systems, granular systems are very
stiff and, following the idea discussed above, it was found necessary to limit the rate
of boundary movement to γH , roughly reflecting the vertical motion of a rotating
force chain,

χ̇ = min

{
γ

τyy − τ0

τ0

, γ
τyy − τ0

|τyy − τ0|

}
. (3.2)

Furthermore, to maintain the periodic structure, each particle is moved along with
the boundary at a rate appropriate to its position so that the entire system expands
and contracts as a whole. Thus, as the top moves with velocity χ̇H , a particle with its
centre at a vertical coordinate y moves with vertical velocity χ̇y. With this scheme,
the averaged stress is equal to the desired stress to within 1 %. In nearly all cases,
the normalized r.m.s. density variation (

√
〈ν − 〈ν〉〉2/〈ν〉, where 〈〉 represents a time

average) was in most cases less than 0.5 %, and in more than half the cases, less
than 0.25 % indicating the extremely small density changes required to maintain the
applied stress. (Only 5 out of the 242 simulations used for this study, all for µ = 0.1,
had r.m.s. concentration fluctuations exceeding 1 % and all were less than 2 %.)
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For the initial state of the system, the particles are positioned randomly within
the cell with velocities appropriate to their position in the shear flow. To produce
a random initial configuration at large solids concentrations, the particles were
inserted at random positions but at half their desired radius (i.e. at an initially small
concentration). Then the shear flow was set in motion and during the initialization
stage of the simulation, the particles were grown to their final diameters. During
this time, the shear flow is allowed to distribute them as it will, so that the particle
configuration is eventually determined by the concentration and by the necessity of
conforming to a shear flow. This technique was chosen after considering many other
possible ways of initializing the system; see Campbell (2002) for details. Note that at
the concentrations of interest in this paper and because the material is shearing, the
material cannot form crystal structures. Tests reported in Campbell (2002) indicate
that even if started in regular crystal-like packings, the system will eventually break
out of the regular structure and demonstrate the same rheological behaviour as the
random systems studied here.

When the bulk granular material is responding elastically to the applied forces, the
Young’s modulus of the bulk material is proportional to the stiffness k (for systems of
particles, the relationship was derived by Bathurst & Rothenburg 1988). The stiffness
between real solid particles is strongly dependent on the geometry of, and pressure
on, the contact and is thus not solely determined by the elastic moduli of the solid
material that makes up the particles. As a result, k and not the elastic properties of
the constituent solid, is the important parameter in determining the elastic behaviour
of the bulk granular material. Linear contacts are used here because they have only a
single constant k that may be used as a scaling parameter. For the same reason, only
monodisperse spheres are studied as that allows the particle diameter d to be used
as a well-defined intrinsic length scale. These assumptions dictate that any binary
collision between particles will have a fixed contact time regardless of the velocity or
other properties of the impact:

Tbc =
π√

2k

m
− D2

m2

. (3.3)

As in Campbell (1993c, 2002) and Potapov & Campbell (1996), the value of the
average actual contact time relative to Tbc may be used as an indicator of whether
the material is behaving in a collisional (rapid flow) or elastic manner.

4. Interpretation of the governing dimensionless parameters
The parameters that govern the stress are:

τ = f (ν, k, γ, d, ρ, µ, D). (4.1)

Here, τ is the stress, ν is the solid concentration, d is the diameter, ρ is the density of
the solid material that makes up the particles, and µ is the particle surface friction.
In this case, τ is fixed by the applied stress τ0 so the free parameter is the average
concentration ν so that:

ν = f

(
τ0d

k
,

k

ρd3γ 2
, µ, ε

)
. (4.2)

Tests show that this scaling is very robust. In fact, many of the data sets in this paper
have at least two virtually indistinguishable overlapping data points, i.e. points with
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the same τd/k and k/(ρd3γ 2), but using different τ , k and γ . (More extensive tests
were performed in Campbell 2002, with as many as 9 indistinguishable overlapping
points in the figures.)

As pointed out in Campbell (2002), τd/k may be thought of as the deformation
induced in a particle by the stress τ scaled by the particle diameter. The elastic
parameter k/(ρd3γ 2) was given three interpretations. Probably the most useful is to
think of (k/(ρd3γ 2))−1/2 as the fraction of a particle diameter that a particle will
deform owing solely to the inertia of the particle impact. However, since generally
2km�D2/m2 in (3.3) (unless the coefficient of restitution ε is very small), the
parameter may be interpreted as the squared ratio of the flow time scale (1/γ )
to the binary collision time, Tbc. Thus, at small values of k/(ρd3γ 2), the shear
rate γ is pushing particles together, generating contacts at a rate comparable to
the rate at which the elastic contact forces push them apart; this accounts for
Campbell’s (2002) observation that, at small k/(ρd3γ 2), force chains can form at
surprisingly small concentrations and cause a transition from inertial to elastic
behaviour.

In stress-controlled systems, it is not possible to determine the flow regime from
direct examination of the stress behaviour as all the components of stress vary
proportionally to the applied stress. Thus, changing the shear rate or concentration
at a fixed applied stress will have little effect on the magnitude of the other stress
components. Because the stress behaviour cannot be used, it is necessary to find
indirect ways of determining the flow regime. One indicator of the elastic–quasi-
static↔ elastic–inertial transition, can be found from the concentration ν; when ν

becomes dependent on k/(ρd3γ 2), the flow is dependent on the shear rate and has thus
transitioned to elastic–inertial behaviour. But while that particular determination may
only be made in stress-controlled flows, other methods of flow-regime determination
are already apparent in the fixed-concentration results of Campbell (2002). For
example, it was observed that in the elastic–inertial regime, the stress ratio τxy/τyy,

decreases with k/(ρd3γ 2) and becomes constant when the flow transitions to elastic–
quasi-static behaviour; this change will be used as another indicator of the elastic–
quasi-static↔ elastic–inertial transition. An indicator of the elastic–inertial↔ inertial
transition can be found from the ratio tc/Tbc, of the actual collision time tc to the
binary collision time Tbc given in (3.3). Any binary collision must, within numerical
precision, occur in Tbc and can only be extended if there are simultaneous interactions
between three or more particles. If the particles are locked in force chains as in the
elastic–quasi-static and elastic–inertial regimes, then the actual contact time is roughly
the same as the lifetime of the chain. The chain’s life is a process of (i) formation as
the shear flow drives the particles together, (ii) rotation of the chain in the shear flow,
and (iii) eventual destruction as the rotation makes the chain unstable. All of these
processes are controlled by the shear rate, and Campbell (2002) demonstrated that
in the elastic–quasi-static and elastic–inertial regimes, tc/Tbc varies as a function of
k/(ρd3γ 2) and should be roughly inversely proportional to the shear rate. Campbell
(2003) found that for a contact to endure for such long periods of time (up to a
thousand Tbc), it must be locked in a force chain that is loaded at a value comparable
to the force on the contact. Such a force must be applied external to the chain, for
example by bounding walls; as there are no walls in the simulation to apply such
a force, this requires that the force chains close on themselves across the periodic
boundaries so that, in effect, the chains are infinitely long. When tc/Tbc increases with
k/(ρd3γ 2), the flow is elastic (i.e. either elastic–quasi-static or elastic–inertial) and
when independent of k/(ρd3γ 2), the flow is inertial.
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Figure 2 shows snapshots of the contact forces inside the control volume for cases
that, by the above prescriptions, correspond to the elastic–quasi-static, elastic–inertial
and collisional regimes, respectively. As this is a three-dimensional system, these
pictures represent projections of the contact forces onto the various planes. In each
subfigure, the large figure on the left-hand side represents the projection onto the
shear plane (x, y-plane). (Here the mean flow is in the x-direction and the velocity
gradient is in the y-direction.) The smaller inserts on the right-hand side represent
the projections onto the x, z-plane (top) and the y, z-plane (bottom). By using all
three projections, it is possible to follow the paths of force chains through the control
volume. Following a long tradition originating with Cundall & Strack (1979), each line
goes between the centres of contacting particles and the width of the line represents
the force. The scale varies in each subfigure. In the large shearplane figure, the largest
stress is represented by a line 15 times thicker than the smallest. (For clarity, in the
smaller subfigures on the right-hand side, the largest stress lines are only 7 times
thicker than the smallest.) A complicated contact network of force chains is plainly
apparent in figures 2(a)–2(c), representing the elastic–quasi-static and elastic–inertial
regimes. In the collisional regime, figure 2(d), the contact lines appear infrequently
and are only a single particle diameter long. figures 2(b) and 2(c) both lie in the
elastic–inertial, figure 2(b) lies near the elastic–quasi-static/elastic–inertial transition
and figure 2(c) lies near the elastic–inertial/collisional transition. Other than that,
these figures were chosen more or less at random from the more than 200 simulations
used in this study and each represents the contact network that existed at the end of
the simulation. Notice that the elastic–inertial figure 2(b) is nearly indistinguishable
from the elastic–quasi-static case in figure 2(a) showing that the transition is only
due to inertial effects and not due to changes in the internal structure (although, as
the structure is unsteady, we should not draw two many conclusions from snapshots).
This may be somewhat surprising as the concentration for figure 2(b) (ν =0.57) is
smaller that that for figure 2(a) (ν =0.59), so that this is indicative of the ability of
shear to generate force chains.

For simplicity, the shorthands, T ∗= τ0d/k and k∗= k/(ρd3γ 2) will occasionally be
used, especially in figure legends where space is at a premium.

4.1. Appropriate values for the dimensionless confining stress, τ0d/k

To determine appropriate values of τ0d/k, it is first necessary to estimate appropriate
values of the interparticle stiffness k. Measurements (Richart, Woods & Hall 1970;
Richart 1978) show that the sound speed in loose 1 mm sand is of the order of
100 m s−1 which implies that, discarding constants of order 1,

√
E/ρ∼ 100 m s−1

where E and ρ are the Young’s modulus and density of the bulk sand. Assuming a
60 % packing fraction ρ∼ 1500 kg m−3, making E of the order of 1.5× 107 Pa. Now
Bathurst & Rothenburg (1988) showed that E∼ nk/d where n, is the coordination
number (which usually has a value around 3 in a loose medium). Thus, dropping n,
as an order 1 constant,

k ∼ (1.5× 107 Pa)(0.001 m) = 15 000(Pa−m) = 15 000 N m−1.

Now assume that the applied stress τ0 is exerted by an overburden h, of material,
so that τ0 = ρgh≈ 15000h Pa. Hence

τd

k
=

(15 000h Pa)d

15 000 Nm−1
= (1 m−2)hd =(0.001 m−1)h.
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(a)

H/2

(b)

Figure 2(a, b). For caption see facing page.

Consequently, an overburden of one particle diameter (h = 0.001 m) corresponds
to τ0d/k =10−6, probably the smallest overburden of interest. At the other end of
the spectrum, τ0d/k = 10−1 corresponds to a 100 m overburden (and a 10 % mean
particle deformation); while even deeper flows might be possible, particularly in large
landslides, such a large stress would undoubtedly crush and grind brittle particles
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(c)

(d)

Figure 2. Snapshots of the contact force network. The large figure to the left-hand side is
the projection in the (x, y)-plane. The top figure on the right-hand side is the projection
onto the (x, z)-plane and the bottom is the projection onto the (y, z)-plane. Each line
connects the centres of the contacting particles with a width proportional to the force on
the contact. (a) Elastic–quasi-static, τ0d/k = 10−3, k/(ρd3γ 2) = 107, ν = 0.59, (b) elastic–inertial
τ0d/k = 5× 10−4, k/(ρd3γ 2) = 106, ν =0.57, (c) elastic–inertial τ0d/k = 2× 10−5, k/(ρd3γ 2) =
106, ν = 0.55, and (d) collisional τ0d/k = 10−5, k/(ρd3γ 2) = 105, ν = 0.45. For all, µ= 0.5.
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(which, of course, happens frequently). While there are some granules (golf, tennis
and most other sports balls, for example) that can easily respond elastically to
even 50 % deformations, τ0d/k = 10−1 is a reasonable upper bound for this study
(especially as going another order of magnitude to τ0d/k = 100, implies a 100 %
overlap). Consequently, this paper will vary τ0d/k within the range 10−6 to 10−1.

It should also be noted that there is a minimum value of τ0d/k that is achievable
in the simulation for each value of k/(ρd3γ 2). This is evident from rapid flow theory
where the stresses are singular both as ν approaches the shearable limit and as ν → 0
(i.e. τ → ∞ at the shearable limit and as ν → 0, see for example, Lun et al. 1984;
Campbell 1989, 1990). In between, the scaled stress, τ/(ρd2γ 2) reaches a minimum
value whose magnitude and location depends on the coefficient of restitution ε, and
the surface friction µ (this usually occurs around ν = 0.2 and thus far below the
concentrations of interest in this paper). If a smaller value of τ0d/k = τ0/(ρd2γ 2)/
(k/(ρd3γ 2)) is specified, it is impossible for the system to reach a force balance. Thus,
for small τ0d/k, the achievable values of k/(ρd3γ 2) are restricted, e.g. at τ0d/k = 10−6,

the smallest accessible shear rate corresponds to k/(ρd3γ 2) = 106.

5. Results
For given material properties, once the applied stress and shear rate are specified,

(fixing τ0d/k and k/(ρd3γ 2)), (4.2) dictates that the only dependent parameter is the
solid fraction ν which will itself vary slightly over time as the control volume expands
and contracts. We can anticipate three regimes of behaviour for ν as a function of
τ0d/k and k/(ρd3γ 2). At very large loadings, the bulk material will be compressible
because of the compressibility of the contacts. For example, the 10 % deformations
expected at τ0d/k =10−1 means that the particle centres are 10 % closer than a
particle diameter, resulting in a 37 % increase in concentration. However, we can
expect that as the burden is relaxed, there will be little dependence of ν upon τ0d/k

at small shear rates, simply because the particle deformations become insignificant; in
other words, there will be no significant concentration difference between the 0.1 %
particle deformations of τ0d/k = 10−3 and the 0.001 % deformations of τ0d/k = 10−6.

This last is characteristic of ‘critical state’ behaviour (see for example Casagrande
1938; Roscoe et al. 1958; Schofield & Wroth 1968). Slowly shearing a granular
material will either dilate or consolidate as needed until it assumes a fixed ‘critical state’
concentration, whose value is a function of the material type and the applied load. The
variation of the critical state concentration with load is due to particle compressibility
and at small loads becomes independent of loading as the compressibility becomes
insignificant. The term ‘low-stress critical state concentration’ will be used to refer to
this small-load limit in the following figures.

Finally, when the shear rate becomes large, the applied stress can be supported by
the inertia of the particles and the flow will deviate from the low-stress critical state
behaviour.

Figure 3 shows the time-averaged values of ν as a function of τ0d/k, for various
values of k/(ρd3γ 2) and three values of the particle surface friction µ =0.1, 0.5, 1.0.

All three regimes mentioned above: particle compressibility, critical state and inertial
deviation are apparent in this figure. Naturally, the larger the shear rate (the smaller
the k/(ρd3γ 2)), the larger the applied stress at which the curve deviates from the
critical state.

As these observations concern only the concentration and not the stress–strain
behaviour, they cannot be directly related to the elastic–quasi-static, elastic–inertial
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and inertial regimes. However, the points where the lines for the various k/(ρd3γ 2)
deviate from the critical state can be considered the first appearance of inertial effects
and are potential indicators of the elastic–quasi-static/elastic–inertial transition. (A
similar plot can be found in Aharonov & Sparks (1999) although they identified this
as a ‘solid’ to ‘gas’ transition despite evidence of force chains in some of the ‘gas’
states. They also showed that the stress power spectral density had a slope near unity
in the elastic–inertial regime which might reflect the linear dependence of the stresses
on the shear rate.)

The ‘low stress critical state lines’ shown in figure 3 are simply drawn by eye through
the small shear rate (large k/(ρd3γ 2)) points. Note that the data for the various
k/(ρd3γ 2) congregates about these lines until they diverge one by one, with the smallest
k/(ρd3γ 2) (largest shear rate) diverging at the largest τ0d/k. Notice that the critical
state values for µ = 0.5 and µ =1.0 are at ν = 0.58, while the µ = 0.1 line is somewhat
higher at about ν = 0.61. These values coincide with the elastic–quasi-static↔ inertial
transition points observed at fixed concentration and large k/(ρd3γ 2) by Campbell
(2002). As in Campbell (2002), the larger critical concentration for µ = 0.1 can be
attributed to a weakening of the force chains by the small surface friction.

Figure 4 shows the corresponding cases for the stress ratio, τxy/τyy as a function of
k/(ρd3γ 2). To avoid cluttering the figure with too much data, only the lines for the
decade values of τ0d/k are shown. As with the constant volume studies in Campbell
(2002), τxy/τyy initially falls as k/(ρd3γ 2) increases, demonstrating elastic–inertial
behaviour, and becomes constant at large k/(ρd3γ 2), demonstrating elastic–quasi-
static behaviour. (This transition was used to first identify the two flow regimes in
Campbell 2002.) Thus, the intersection of the sloping and horizontal lines will be
used as a second indicator of the elastic–inertial and elastic–quasi-static regimes. In
interpreting this figure, the reader should remember that the concentration is not
constant along each of the lines and is generally decreasing as we move from right
to left in the figure. This might explain some of the features of these plots. For the
fixed-concentration studies (Campbell 2002) the transition between the elastic–inertial
and elastic–quasi-static regimes was a relatively abrupt change from a steeply sloping
line and a flat τxy/τyy = const line. Here, many of the curves demonstrate a longer
and more gently sloping transitional stage before attaining quasi-static behaviour. In
fact, the highest applied stress cases never show the more steeply sloping behaviour;
consequently, these highest stress lines are not used to distinguish the flow-regime
transitions.

Particle surface friction can be seen to have an effect both on the overall value
of the stress ratio τxy/τyy, and on the limiting quasi-static value as k/(ρd3γ 2) → ∞.

Notice that the largest values of τxy/τyy can reach 0.8 for µ =0.5 and µ =1.0, but
do not exceed 0.6 for µ = 0.1. Furthermore, the limiting quasi-static values of τxy/τyy

decrease only slightly going from µ = 1.0 to µ = 0.5, but are significantly smaller for
µ =0.1. Much the same behaviour was observed in the fixed-concentration results of
Campbell (2002), although the limiting value of the µ = 0.1 data is slightly smaller
here. There is also some odd behaviour for the higher stress levels in the low friction,
µ =0.1, data in figure 4(a). Note that for small values of k/(ρd3γ 2), and τ0d/k = 0.01
and 0.1, the stress ratio τxy/τyy falls below the eventual quasi-static limit. This may
be explained by first noting that such small friction allows the particle surfaces to
readily slip relative to one another. If the particle surfaces do not frictionally lock
together, then the system does not go through the process of force chain formation,
rotation and disintegration. Instead, the shear stress is largely generated by the
geometric constraint that the particles have to pass around one another to maintain
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a shear flow. At high stress levels, the particles are highly deformed and it is possible
their surfaces simply squeeze through the constraint producing smaller shear stresses.
(A similar behaviour was seen for very soft particles by Zhang & Campbell 1992).
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How can we detect the transition from elastic–inertial to inertial (either non-
collisional or collisional) behaviour? Once again, the magnitudes of the stresses are
dictated by the applied stress and only indirect indications are possible; but remember
that the physical nature of elastic–inertial behaviour is that (i) the particles are locked
into force chains, as in elastic–quasi-static behaviour, and (ii) that the inertia is large
enough to be reflected in the forces that load the chains. The second criterion can
be determined when τxy/τyy deviates from quasi-static behaviour as described above.
Also as mentioned above, the existence of force chains can be deduced from the
contact time ratio tc/Tbc. In true rapid granular flows, all particle interactions are
collisional and tc/Tbc =1. In elastic flows, where the particles become trapped in force
chains, the interparticle contact time is roughly the life of the chain and thus depends
on γ and is independent of Tbc; thus tc/Tbc will be a function of k/(ρd3γ 2) and will
have a slope near 1/2 when plotted on a log–log plot.

Such a plot is shown in figure 5. Note that there is generally a sharp transition
between inertial–collisional (tc/Tbc = 1) and elastic behaviour (tc/Tbc = f (k/(ρd3γ 2))
with slope near 1/2). There is little evidence of the intervening inertial–non-collisional
regime in which tc/Tbc > 1 (indicating simultaneous interactions of more than two
particles), but with no apparent power-law dependence on k/(ρd3γ 2) even though
that regime was prominent in the fixed-concentration studies. For these controlled
stress cases, it appears that either the particles interact by binary collisions, or they
deviate onto a line with slope near 1/2, with only at most one or two points between
that indicate a transitional behaviour.

Note that the ultimate slope of the tc/Tbc lines appears to be a function of the surface
friction coefficient µ. The smallest surface friction, µ = 0.1, is the most complicated.
There, the line for the largest applied stress τ0d/k =0.1, exhibits a slope slightly smaller
than 1/2, but in the intermediate range, the slope is equal to 1/2, becoming larger
than 1/2 for the smallest τ0d/k. For the larger values of the friction coefficient, µ = 0.5
and µ =1.0, a nearly opposite behaviour is observed. For the largest applied stress,
τ0d/k = 0.1, the slopes equal 1/2, but smaller slopes are observed for smaller values
τ0d/k. There is also no increase in slope for the smallest τ0d/k as seen for µ = 0.1.

The reasons for this are not clear. Remember, however, (i) that the the system will
expand if the stresses become too large and (ii) that the larger the friction coefficient
µ, the larger the force that can be supported by the force chains. Thus, it appears that
for the larger µ the system expands to relax the stress and allows the chain to break
apart early; but at the largest loadings the chains are held tightly together, cannot
break early and thus produce a slope of 1/2. While those arguments would seem to
account for most aspects of the observations, this behaviour is not well understood.

Collectively, these ideas can be used to create the flowmaps in figure 6, indicating
the flow regimes as functions of k/(ρd3γ 2) and τ0d/k. The transition from elastic–
quasi-static to elastic–inertial behaviour is determined in two ways: (i) the deviation
from critical state behaviour in figure 3, and (ii) the transition apparent in the
τxy/τyy plots in figure 4. As shown in figure 4, the transition point is taken to be
the intersection between a line drawn through the steeply sloping portion of the
curve and one through the quasi-static portion. The transition from elastic–inertial
to inertial–collisional behaviour is determined by drawing a line through the sloping
points in the tc/Tbc curves in figure 5 and seeing where it intersects the tc/Tbc =1 line.
Because this technique essentially extrapolates the point where tc/Tbc = 1, it predicts
the onset of not just inertial behaviour, but true collisional (rapid flow) behaviour.
The transition points are enclosed by shaded boundaries because these techniques are
somewhat ad hoc and imprecise.
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Figure 6. Flowmaps showing the parametric boundaries for the elastic–quasi-static,
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The nearly direct transition from elastic–inertial to inertial–collisional behaviour
should be expected as little of the inertial–non-collisional regime is apparent in
figure 5. In other words, there are few points that do not fit either on the tc/Tbc =1
line or on one of the sloping lines and could be considered to be transitional between
collisional and elastic behaviour. Until the inertia of the particles is sufficient to
support the applied load, some of the load will have to be supported elastically,
holding the particles together in force chains. When inertia can support the load,
the particles do not have to remain in persistent contact and the flow dilates so
that the particles lose contact with their neighbours and interact collisionally. In
fixed concentration flows, however, the system is not free to expand and may be
maintained at a concentration where simultaneous multiparticle contacts are possible,
but, as there is no applied load, such structures will break apart with time scales of
the order of the binary collision time.

6. Discussion
The flow maps in figure 6 intuitively seem much more reasonable than the

corresponding fixed concentration results in Campbell (2002). Notice that at a fixed
loading, τ0d/k, increasing the shear rate γ (decreasing k/(ρd3γ 2)), causes a transition
from elastic–quasi-static → elastic–inertial → inertial–collisional behaviour, just as
we would intuitively expect. At fixed concentration, the results were surprisingly
different. First of all, only transitions between elastic–quasi-static ↔ elastic–inertial
or elastic–inertial ↔ inertial (collisional or non-collisional) behaviours were observed
at fixed concentration; there was no path between elastic–quasi-static and inertial
behaviour except by reducing the concentration. (This is easily understood because,
at large concentrations, the particles must stay in contact with their neighbours, i.e.
are locked in force chains regardless of the shear rate.) An even stranger aspect
of fixed-concentration flows was that elastic–inertial → inertial–non-collisional →
inertial–collisional (rapid-flow) transition is accomplished by increasing k/(ρd3γ 2),
which can be brought about by reducing the shear rate, thus leading to the conclusion
that ‘rapid flows’ are less rapid than non-rapid flows (although this makes more sense
if we think of the k/(ρd3γ 2) → ∞ limit as the k → ∞ limit, rather than the γ → 0
limit, implying rigid particles and collisional interactions). The opposite behaviour
is observed in these stress-controlled flows. This is the first indication that these
types of system-scale constraints affect the rheology and suggests that the results of
controlled-stress flows cannot be applied to constant-volume flows and vice versa.

The fact that rapid flows now appear at small k/(ρd3γ 2) in controlled stress flows,
presents its own set of conceptual difficulties. Small k/(ρd3γ 2) corresponds to the
large shear rate limit where we would expect rapid flows, but it also corresponds to a
small k limit, indicating soft particles. This may at first appear surprising as rapid flow
theory assumes instantaneous collisions which imply the k →∞ limit. However, in the
controlled stress case, the apparent contradiction is something of an illusion as k also
appears in the vertical ordinate τ0d/k. Thus, reducing k with all other dimensional
quantities fixed, moves us diagonally on the flowmap into regions of higher stress
and thus away from the rapid-flow regime. Alternatively, moving horizontally by
reducing k at constant τ0d/k, requires reducing τ0 so that τ0/k remains a constant,
thus entering the rapid-flow regime by reducing the stress instead of increasing the
shear rate.

These flowmaps give an indication of why rapid granular flows are seldom
observed under Earth’s gravity. For example, these results predict that a flow of
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µ =0.5 spheres becomes collisional at about τ0d/k = 10−5 (which for the 1 mm
sand used as an example in § 4.1, corresponds to a flow of about 10 particles
deep) and k/(ρd3γ 2) = 106. Continuing the use of the sand numbers from § 4.1, this
corresponds to a shear rate of about 100 s−1, which is in the same range as the
minimum values reported by Wang & Campbell (1992) for 3 mm glass spheres on
systems of similar depth. The Wang & Campbell results show that the minimum
shear rate decreased with particle size in roughly the same way as predicted by
these results. For a fixed stress, inertial flows appear at a fixed k/(ρd3γ 2). Now,
measurements by Hostler & Brennen (2003) indicate that the soundspeed in spherical
particles is independent of their diameter. According to Bathurst & Rothenberg
(1988) this fixes k/(ρd). Then the minimum inertial shear rate should vary so that
dγmin = const, which the preceding order of magnitude calculations suggest is of
the order of dγmin = 0.1 m s−1. The largest concentration (ν = 0.5) Wang & Campbell
results show that for 1.9 mm glassbeads, dγmin = 0.34 m s−1, for 3.0 mm glassbeads,
dγmin =0.36 m s−1, and for 3.75 mm glassbeads, dγmin = 0.33 m s−1. It should be noted
that the Wang & Campbell studies were not attempts to measure the limits of rapid
granular flows. However, at shear rates smaller than these, they found the flow was
unsteady in a manner that, in light of these results, can be understood as a signal of
a regime transition. Wang & Campbell did however, make every attempt to record
data at the smallest possible shear rate that did not demonstrate such an instability.
Thus, to some extent, these results are anecdotal, but they are still compelling since
they found dγmin = const and of the expected order. Also it should be noted that the
Wang & Campbell shear cell had roughened walls, while there are no boundaries in
these simulations; this may contribute to the quantitative discrepancies noted above.

As mentioned in Campbell (2002), these studies were undertaken to better
understand work on landslides (Campbell, Cleary & Hopkins 1995), hoppers
(Potapov & Campbell 1996) and the ‘phase-change’ between fluid and solid behaviour
(Campbell & Zhang 1992; Campbell 1993c; Zhang & Campbell 1992). All of these
indicated that the stress ratio τxy/τyy decreased with the shear rate, just as it is
observed to do in the elastic–inertial regime. However, the fixed concentration data
in Campbell (2002) also indicated that only the landslide data could be so explained;
for example, at ν = 0.6, elastic–inertial behaviour was observed for k/(ρd3γ 2) < 104

which for 1 mm sand required about 1000 s−1of shear. (This is much too large for the
hopper or phase change studies and only applies to the landslide data because very
soft particles were used in the landslide simulations). However, that is not so for the
stress-controlled studies shown here. For example, figure 6 indicates that for µ = 0.5
and τ0d/k =10−5 (ten particles deep), elastic–inertial behaviour can first be observed
for k/(ρd3γ 2)≈ 5× 107 or about γ = 14 s−1. The reason for this is obvious from the
underlying physics. Elastic–inertial behaviour occurs when the inertial forces are of
the same order as the elastic forces. In the fixed-concentration flows of Campbell
(2002), the elastic forces were dictated by the requirement that the particles undergo
shear at the large concentrations where force chains form. Reducing the concentration
to the point that the force chains disappeared, the elastic forces went away and the
stresses dropped by orders of magnitude; this is possible because the concentration
was independent of the stresses generated. In constant-stress flows, as long as the
shear rate is small enough, force chains can always form even for very small applied
stresses, simply because if the inertia effects are small, force chains are the only method
available to balance the applied load. For small applied stresses, the corresponding
elastic forces are small and it takes a small shear rate to generate inertial forces that
are comparable to the elastic forces, pushing the flow into the elastic–inertial regime.
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As a result, elastic–inertial behaviour is much more accessible in controlled stress
flows. Furthermore when progressing from elastic–quasi-static to inertial behaviour,
the flow must go through an intermediate elastic–inertial regime.

A correspondence between the controlled-stress and fixed-concentration studies
can be found in the ‘low-stress critical state’ concentrations shown in figure 3. In
these studies, the transition is between quasi-static ↔ elastic–inertial, which are both
dominated by force chains; but the transition occurs at the same concentration as the
physically different elastic–quasi-static↔ inertial transition concentrations observed at
constant volume by Campbell (2002) at large k/(ρd3γ 2). This correspondence between
the two concentrations was first noted for two-dimensional systems by Aharonov &
Sparks (1999), although they described both transitions as between ‘solid’ and ‘gas’
states without realizing that they are two physically distinct transitions.

In the civil engineering field of soil mechanics, the critical concentration (which
in that discipline is usually referred to as a ‘critical void ratio’ or one minus the
critical concentration) is determined by balancing two competing effects induced by
a shearing motion. The first is the necessity of a rigid granular to expand in order
to allow the particles to pass over one another. This is balanced by the necessity of
the material to support an applied stress which tries to compress the material. (Note
that this description implicitly assumes controlled-stress constraints.) The critical
concentration is a function of the stress level and, as civil engineers are interested in
soils heavily loaded by building weight, critical state values extend up into regions
where particle compressibility is important and the particle must of necessity be
supported elastically.

Thus, Aharonov & Sparks (1999) err in describing the critical state as a ‘rigidity
transition’ between solid and gas-like flows at a fixed concentration. It would be hard
to argue that figure 2(b) is significantly less rigid that figure 2(a) despite figure 2(b)
being a full 2 % below the low-stress critical-state line (similar behaviour can be
seen in their own figure 7). In controlled-stress situations, the transition is always
from elastic–quasi-static ↔ elastic–inertial (the transition separating figures 2(a) and
2b), force chains dominate on both sides of the transition, and thus this is never a
rigidity transition. The concept of a rigidity transition separating elastic and inertial
flows applies only to controlled-volume situations, and then only at small shear rates.
Campbell (2002) has shown that for large shear rates, it is possible to generate force
chains at concentrations well below the critical-state value.

Aharonov & Sparks are correct in identifying the low-stress critical-state line
as the smallest concentration that can support force chains and thus support an
applied load without inertial assistance. For low stress levels (that do not deform
particles sufficiently to significantly affect the concentration) and shear rates too
small to provide significant inertial support, the material will assume the smallest
possible concentration that can support the applied load (the ‘low-stress critical-
state’ concentration), which should roughly correspond to the smallest density that
can accommodate force chains. Thus regime transitions occur at the same critical
concentration, even though the transition is physically different in controlled-stress
(elastic–quasi-static to elastic–inertial) and controlled-volume conditions (elastic–
quasi-static to inertial–non-collsional). It should be noted that Aharonov & Sparks
(1999) actually found slightly different values for their ‘critical grain volume fraction’
at constant stress and volume conditions. The reason why their two-dimensional
results do not show that the two values are equal can be traced to their simulation
scheme. They used a control volume bound on top and bottom by surfaces roughened
with close-packed disks. It has been known for some time (e.g. Campbell 1993b) that
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such a roughening, particularly in two dimensions, behaves almost as a flat wall and
provides very weak coupling with the moving particles. As a result, such systems have
non-uniform shear rates and concentrations and often exhibit stagnant regions. In
fact, animations of the Aharonov & Sparks (1999) simulations demonstrate all of
these features and in addition are unsteady. The constant-volume flows, in particular,
showed stagnant zones packed against one boundary that filled half the shear zone.
As a result, care must be taken in generalizing their results.

The results shown here bring into question many studies that use controlled-stress
flows as analoguess of fixed-concentration flows. Even rheological shear cells such as
those used by Savage & Sayed (1984), Hanes & Inman (1985) and Wang & Campbell
(1992), as well as Couette-flow computer simulations (Campbell 1982; Campbell &
Brennen 1985; Campbell 1993a, b) had movable tops so that the concentration is not
fixed, but was determined by a balance between the applied stress and the particle
response. At least for the cases in which the author was involved, this was done
to assure a good mechanical contact between the granular material and the moving
boundaries. The physics as described in Campbell (1982, pp. 39–41) point out that
at fixed volume, the large internal dissipation causes the shearing material to migrate
away from the driving walls toward the centre of the channel, losing contact with the
driving boundaries and ceasing to shear – an inelastic clustering of the type studied
by Hopkins & Louge (1991). By requiring the material to balance an applied stress, a
good mechanical contact is maintained between the boundaries and the test material,
but the concentration is not truly fixed (although it varies only slightly). Yet, the
results of these experiments were presented as stress as a function of shear rate and
concentration, as if the concentration were truly, and not just approximately, fixed.
All of these shear cell results may have to be reconsidered as controlled-stress instead
of fixed-concentration studies.

7. Conclusions
This paper has examined the rheology of granular materials in systems that are

stress-controlled so that the forces generated internal to the material must balance
an externally applied stress. This requires the concentration to vary slightly, often
immeasurably, and thus stress-controlled systems may appear to operate at constant
volume. However, because the bulk material is stiff, small concentration changes
can have a large effect on the stresses generated and thus on the overall rheology.
As a result, the behaviour of controlled-stress flows can be very different from
fixed-concentration flows. These differences are significant because stress-controlled
flows are by far the most common. For example, the weight of the overburden would
control the stress at any point in the interior of flows with free surfaces, such as chutes,
landslides and hoppers, and the concentration can vary locally to accommodate that
stress as required.

The difference in the rheology between controlled-stress and controlled-volume
flows can be seen immediately when comparing the controlled stress flowmaps in fig-
ure 6 with their fixed concentration counterparts in Campbell (2002). In particular, the
fixed-volume flows approach inertial–collisional behaviour as k/(ρd3γ 2)→∞ (which,
in these circumstances, is best thought of as the k → ∞ or rigid-particle/collisional
interaction limit), while controlled-stress flows approach inertial–collisional behaviour
at the opposite limit as k/(ρd3γ 2)→ 0 (which is then best thought of as the γ → ∞,
or high shear-rate limit). A significant consequence of this work is that rheological
tests done at fixed concentration may not be applicable to controlled-stress conditions
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at the same averaged concentration and vice versa. However, that should already have
been evident from the critical-state hypothesis (Casagrande 1938; Schofield & Wroth
1968) which showed that under controlled stress conditions, a granular material
could exert a variety of stresses at the same shear rate with no measurable change
in concentration. Conversely, at fixed concentration, only a single stress is exerted at
each concentration and shear rate.

These differences may partially explain the difficulty in unifying the quasi-static and
rapid flow theories. As the plasticity models on which quasi-static flow theory is based
are constructed in stress space, they are easier to implement in situations where the
boundary conditions are specified in terms of stress (controlled-stress flows). Rapid
flow theories are based on kinetic theory ideas in which the concentration appears
explicitly through the pair-distribution function, and thus fit more naturally into
fixed-concentration flows.

In some ways, it is surprising that elastic properties have been ignored in the
modelling of granular materials. After all, they are granular solids and each granule
possesses the elastic properties of a normal solid. They are not molecules as assumed
in kinetic theory models, nor do they move through dislocations like plastic solids.
Thus, elastic properties (which relate the stress state to the strain in the bulk material)
did not previously enter into the modelling owing to the basic assumptions of the
plasticity and kinetic theory formalisms. As Coulomb friction relates the stresses at
yielding, and furthermore because plasticity models are formulated in stress space,
elastic strains do not appear directly in quasi-static models. The goal of the quasi-
static models is to predict the large plastic flow resulting from the stress state, and,
compared to the plastic flow strains, the small elastic strains induced by the stress
state are insignificant. There is then no reason to relate the stresses and elastic strains
and as a result, the elastic properties do not appear directly in quasi-static analyses.
In rapid flows, particles only interact by instantaneous collision and thus implicitly
assume infinite elastic moduli so that, again, the elastic properties do not appear in
the models. Thus, including the elastic properties in the rheology requires altering or
abandoning some of the fundamental notions on which these granular flow theories
are based.

Special thanks to Sasha Potapov for his help with the simulation development and
to Michel Tanguay for his help with the figures.
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